
Design Document

DataSafety

Elena Korkes and Victoria Hennemann

Executive Pitch
Our innovation is an Android application-based research tool that hosts application-based

surveys. This research tool informs on and addresses an user’s understanding and knowledge of data
safety labels. A gap exists in the technology market between the accessibility and readability of data
safety labels with the end user’s comprehension of privacy concerns. Android, one of the leading phone
operating systems, has created this gap in their attempts to make privacy documentation more accessible
and readable for users in a condensed format of a data safety label. Data safety labels are relatively new,
as they were not required by all applications in the Google Play store prior to July 20, 2022 [1]. Multiple
questions remain surrounding the effectiveness of these labels and if/how users interpret these condensed
messages that list the functionality of apps and services. The use of the research tool will provide a user
with a method to inform themselves on how and where data safety labels are presented to users
effectively. The Android application research tool aims to help users make the most informed privacy
decisions that will integrate into the Google Play Store.

The application-based research tool is not only designed to help users make informed decisions, it
is also designed to support multiple different users of the final product. The first users our application is
designed to help are the end users of the application, those who actively make informed decisions
regarding their digital privacy. The first user group provides the data set that we will analyze and use to
evaluate the effectiveness of the privacy labels; and the general interpretation of these labels; the first
users are those who will answer the survey questions. The second set of users, of our final product, are the
Google developers that will use the results provided by the first users, taking the surveys, to implement
and design new nudging tools. The nudging tools are designed with the goal of providing users with the
most helpful information regarding their privacy at the most effective time. Additionally, the third and
final users are other researchers interested in the effectiveness and understanding of data safety labels.
The goal of our application is to be able to expand it in order to run future research studies on the
effectiveness of other elements of data safety.

The area of user understanding of data safety labels is underdeveloped and pertinent given the
recent release of the requirements surrounding data safety labels. Our application is one of the first of its
kind. A significant difference in our application is that it prompts the first users to answer a survey, within
an abbreviated period of time, after a new application has been installed on the first user’s device. Our
innovative application will collect the name of the newly installed application and gather the most
up-to-date version of the data safety label. Based specifically on the gathered data safety label, our
application will then generate a small set of questions for the end user to respond to. An element of our
design, that is still in the development stage, is determining what questions will provide the most useful
information. We want to avoid redundancy, which is vital because installed applications collect a
significant amount of data from their users. In addition, we want our end users to be engaged when
answering the survey questions so they provide meaningful feedback. These are just a few of the things
that make our product different from the current research tools available.

Notably, while many people are concerned about digital privacy, many users feel the benefits of
the product outweigh the possible risks associated with having that data collected in the first place [2].
Because of this, our application will have a significant societal impact. Our application will continue to
provide insights into how and why a user makes decisions regarding their digital privacy. The continuous
collection of data will allow for the development of future tools that work to protect and inform users of
the risks associated with their actions, continuing an ongoing societal impact.

Technical Summary
Our first objective is to generate dynamic surveys that will assess the user’s knowledge of a

specific data safety label once they download a new application. Second, our backend should allow for
this generation of surveys with the least number of updates to the frontend. Our final product application
should consider: latency (when should the user be prompted to answer a survey) and sufficiency (number
of questions asked to users). Within the backend we aim to have some form of logic that will limit the
number of questions asked based on factors of the label that are deemed more important.

Our frontend is built in Android studio which allows us to see front end interactions on a google
device. Our user interface will interact with backend servers hosted in docker containers. NGINX will be
the primary web server that allows for frontend communication specifically to notify the backend when to
initiate the web scraping process after a user downloads a new app. Once the web scraper obtains the
label, this label will be stored in Mongodb. Our team will utilize angular and django to create dynamic
and static survey questions. The responses will be stored in a MYSQL database where they can easily be
queried by a researcher. A diagram of the backend is shown in Figure 1 below.

Making the backend work in the most efficient way possible with the least amount of code will be
technically challenging, however we are planning testing periods between each prototype to make the
application more efficient. Due to the various communication routes our application needs to perform
tasks we foresee the need to test for latency. Additionally, our generation of survey questions will require
some ranking system to determine which questions are shown to participants. Therefore, there will be
testing rounds dedicated to deciding which questions are generated based on safety labels.

This research is funded in its entirety by Google. Therefore, any materials needed such as test
phones, database credits, or other escalated versions of open source software will be funded by the budget
given to the Usable Security and Privacy Lab. We estimate that this project will have a really heavy
backend which will include data querying, building a web scraper, and forming points of communication
between databases, servers, and the user interface. Therefore, we estimate around 1,000-3,000 lines of
code. We expect to put our research application through multiple iterations of testing prior to starting our
first study. Our first testing period will begin once our alpha prototype is complete. This prototype should
scrap the web store when a user downloads the application, generate questions using Survey JS, send the
questions to the user, and obtain user input. This prototype will be demo-ed to a Google Researcher for
feedback. Our second milestone is to create the Beta prototype that will have all the capabilities that we
outlined above. This Beta prototype will go through formal pilot testing to receive feedback before our
final product is used for testing.

Figure 1.

Project Specifications

User Stories

As a user participating in the study, I would like to download the Data Safety Research Tool application
from the Google Play Store.

As a user participating in the study, I would like to see the notification prompt to start the survey when
downloading a new application from the Google Play Store. When clicking the notification it should
redirect me to a survey.

As a user participating in the study, I would like to answer the questions on the survey without any
technical difficulties. I would also like the survey to be readable and easy to understand.

As a researcher, I would like to see the user having a unique id after making a prolific account. This ID
should be sent to the backend so that multiple users can use the system at once.

As a researcher, I would like to have the user results in an organized format in a database. This would
allow me to analyze the data and derive results based on user input.

Flow Diagrams

Summary of Flow Diagram:
- User creates a Prolific Account
- User downloads our application
- Their user ID is sent to backend
- User downloads an application. That application’s id is sent to the backend and scraper will parse

Google Play Store for the label.
- If no label is found, the user will answer survey section 1 and 3.
- If a label is found then the user will answer all questions of the survey.
- Results are stored in the database.
- Researchers should be able to look in the database and see data inserted by participants.
- Researchers will use data to analyze and determine results of research questions.

User Mock-Ups:

Figure 1 Figure 2 Figure 3

Figure 4 Figure 5 Figure 6

The user will download our android application as shown in figure 1. The user will then download a new application
as seen in figure 2. Our application will then populate a notification as shown in figure 3. The user will then be
prompted to start the survey as seen in figure 4. Some of the questions structure and final feedback can be seen in
figure 5 and 6.

Researcher Mock-Ups

Results will be stored in a MySQL Database for analysis that the research can access.

Technical Specifications

Architecture/System Diagrams

External APIs and Frameworks
Backend APIs:
Promise API:
Goal: Use this API to parse Google Play Store for labels and map them into array objects. This will allow
us to easily manipulate the data into a format we wish to use such a json file that is broken up by category.
Description: This API is used in the scraper.js file in our web scraper.
Endpoints used: This web scraper will access:
${BASE_URL}/store/apps/data safety

Where BASE_URL is the playstore link plus the unique ID for the app that was downloaded.
https://play.google.com/store/apps/details?id=com.whatsapp

Ramda API:
Goal: Placeholder value used to specify “gaps” within current functions.
Description: This API is used in the scraper.js file in our web scraper.

Express API:
Goal: Use this as a built-in middleware function. It parses incoming requests with JSON payloads.
Description: Using this to communicate between docker containers in the backend. The backend consists
of multiple docker containers that need to trigger certain actions when something is completed. For
example, when a user downloads an application, the json format of the label will be sent to MongoDB.
Then, when the user clicks on the notification to take the survey, this JSON file will be sent through the
backend to create a list of dynamic questions. Once the user fills out these questions a JSON string will be
sent to a database where it will be stored. This will also be helpful when threading. We will need to thread
each of these processes as multiple users may be using our app or doing the research study at once. This
framework can also allow us to interact and obtain data from the web framework as well.

Endpoints:

Frontend APIs:
Intent API:
Goal: Access the package name of the new application that the user downloaded.
Description: This API is used in MainActivity.java and MyReciever.java in the App repo for our project.
It connects to the internal OS of the phone and is called when the ACTION_PACKAGE_ADDED intent
occurs. The application is always listening for this intent to populate within a device, and the result of the
intent is sent to the notification API.

Notification API:
Goal: Populates a notification with the added package name and redirects the user to start the survey
Description: The API is used in MyReciever.java in the App repo for our project. This API connects to
the internal notification center for Androids and is called after the Intent API has collected the package
name. The parameters passed in to the API include the package name and the redirect link and the results
are shown in the notification for the user.

https://play.google.com/store/apps/details?id=com.whatsapp

Endpoints Used: GET http://10.0.2.2:8888/start?appname={appname}

Frameworks/Other External Tools
Angular
Goal: Use angular framework to build the Survey. Angular has features which convert it to mobile format
using android studio.
Description: Using angular to create static questions for the survey. All stylistic elements on our survey
will use angular.

Django
Goal: Framework for the backend web application based on python.
Description: Communicates between the frontend and the backend for accurate survey generation.
Ports: Connected on 8000:80

Android Studio
Goal: Builds basic front end application
Description: Provides a unified android based environment to independently build, test, and debug our
application. Android Studio is an IntelliJ based IDE which we use for our entire APP repo.

MySQL - PhpMyAdmin
Goal: Saves all survey results from users
Description: This database connects through our Django framework and the NGINX web server to store
the results the user enters into the survey.
Ports: Connected on 8080:80

NGINX
Goal: Hosts the static angular questionnaire
Description: This web server connects through the Docker Compose and the Django framework to host
the static questions of section 1 and 3 of our survey.
Ports: Connected on 8888:80

MongoDB
Goal: Saves all JSON strings of data safety labels
Description: This database connects through our Docker Compose framework and the web scraper to
store the results of the scraped data safety label from the Google Play Store.
Ports: Connected on 8081:8081

Docker-Compose
Goal: Hosts the numerous moving components of application backend
Description: This tool allows us to define each backend component and run multiple containers as a single
service. Each of the containers can run in isolation but they interact with each other when needed for the
purposes of the application. The docker container system is described in the docker-compose.yml file.

http://10.0.2.2:8888/start?appname=%7Bappname

Algorithms

Web Scraper:
Our first algorithmic operation is our web scraper. This is designed to parse the Google Play Store and
obtain the data safety label information of a specific application. If the label is found, a json string will be
sent back to the server and stored in MongoDB.

The web scraper consists of a couple of main components. The Promise API which allows the mapping of
the data into an array format. Then there is a request and throttle js class. The request class makes a
request to the Google Play Store which allows us to parse. The throttle class allows a limit to be placed on
the number of requests obtained at a certain time.

The scraping should occur once the user downloads a new application. So there will be a listener on the
actual device itself that will send a request to the backend which will then trigger the scraping to occur.
Our goal is to have this request contain the user ID obtained from prolific and then the ID of the
application itself so we can scrape the store. This process should repeat itself for every application
downloaded. If multiple users are downloading and using our application at once, there will be threaded
processes that will perform the scraping simultaneously.

Dynamic Survey Question Generation:
This algorithm uses the data present in the JSON of the data safety label to generate questions in relation
to each specific application. The Django framework will pull from the MongoDB to access the label for
the particular application. Our algorithm will then make questions visible to the user depending on if the
particular set of data is collected by the application. There will be a cap on the number of dynamic
questions a user can be asked in order to prevent answering fatigue and provide the researchers with the
most informative set of data.

Generation of User IDS:
Randomly generates a user ID using alphanumerics. It uses an 8 digit combination of numbers and letters.
It is in the views.py file which should be triggered when we build the docker compose. This will assign a
unique ID for every user that is using our application. So this is per device basis. Having a unique ID is
important because if we have multiple users accessing our application and carrying out these processes at
once we will have multiple threads that are executing the scraper, the survey question generation, and the
storing of data. We need the ID to make sure that all the data stored relates back to the data entered on
each device.

Bibliography

[1] Google. (n.d.). Provide information for Google Play's data safety section - play console help. Google.
Retrieved October 13, 2022, from
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en

[2] Auxier, B., Rainie, L., Anderson, M., Perrin, A., Kumar, M., & Turner, E. (2020, August 17).
Americans and privacy: Concerned, confused and feeling lack of control over their personal information.
Pew Research Center: Internet, Science & Tech. Retrieved October 13, 2022, from
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling
-lack-of-control-over-their-personal-information

[3] Study reveals iOS privacy labels miss the mark. (n.d.). Www.cylab.cmu.edu. Retrieved October 17,
2022, from https://www.cylab.cmu.edu/news/2022/07/25-ios-privacy-labels-miss-mark.html

https://support.google.com/googleplay/android-developer/answer/10787469?hl=en
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information
https://www.cylab.cmu.edu/news/2022/07/25-ios-privacy-labels-miss-mark.html

